
TROI SERIAL PLUG-IN™ 2.0
USER GUIDE
October 1999

Troi Automatisering
Vuurlaan 18
2408 NB Alphen a/d Rijn
The Netherlands
Tel: +31-172-426606
Fax: +31-172-470539

You can also visit the Troi web site at: <http://www.troi.com/> for additional information.

Troi Serial Plug-in is copyright 1999 of Troi Automatisering. All rights reserved (13-Oct-1999).

Table of Contents

Installing plug-ins ... 1

Summary of functions ..2

Using external functions ..2

Serial-Version ..2

Serial-GetPortsNames .. 3

Serial-Open ..4

Specifying the port settings 4

Specifying the handshake options 6

Serial-Close ... 9

Serial-Receive ..10

Serial-Send ...11

Receiving Data via Dispatch Scripting™..12

Dispatch Scripting using Script Name 12

Dispatch Scripting using a Key 12

Script Triggering on a Match String 15

Serial-SetDispatchScript ..16

Serial-DataWasReceived .. 17

Serial-RestoreSituation .. 18

Serial-ToASCII ... 19

Serial-Control ... 20

Appendix A: ASCII Table ... 23

i

Installing plug-ins

For Macintosh:
■ Quit FileMaker Pro.
■ Put the file "Troi Serial Plug-in" from the folder "MacOS" into the "FileMaker

Extensions" folder in the FileMaker Pro folder.
■ If you have installed previous versions of this plug-in, you are asked: “An

older item named “Troi Serial Plug-In” already exists in this location. Do you
want to replace it with the one you’re moving?’. Press the OK button.

■ Start FileMaker Pro. The first time the Troi Serial Plug-in is used it will dis-
play a dialog box, indicating that it is loading and showing the registration sta-
tus.

For Windows:
■ Quit FileMaker Pro.
■ Put the file "trserial.fmx" from the directory "Windows" into the

"SYSTEM" subdirectory in the FileMaker Pro directory.
■ If you have installed previous versions of this plug-in, you are asked:

“This folder already contains a file called 'trserial.fmx'. Would you
like to replace the existing file with this one?’. Press the Yes button.

■ Start FileMaker Pro. The Troi Serial Plug-in will display a dialog
box, indicating that it is loading and showing the registration status.

TIP You can check which plug-ins you have loaded by going to the plug-in preferences: Choose
Preferences from the Edit menu, and then choose Plug-ins.

You can now open the file "SeriExpl.fp3" to see how to use the plug-in's functions. There is also a Function
overview in this file.

IMPORTANT There is a problem in FileMaker Pro 4.0v1. Please make sure that all plug-ins that are in the
folder "FileMaker Extensions" are enabled in the preferences. (Under Edit/ Preferences/ Application/ Plug-
ins). Make sure all plug-ins have a cross before their name. Remove plug-ins you don't use from the
"FileMaker Extensions" folder.
NB: This bug is fixed in version 4.0v2 and later. So please upgrade to the latest versions.

If You Have Problems

This user manual tries to give you all the information necessary to use this plug-in. So if you have a prob-
lem please read this user guide first. If that doesn't help you can get free support by email. Send your ques-
tions to support@troi.com with a full explanation of the problem. Also give as much relevant information
(version of the plug-in, which platform, version of the operating system, version of FileMaker Pro) as pos-
sible.

If you find any mistake in this manual or have a suggestion please let us know. We appreciate your feed-
back!

1

Summary of functions

Plug-ins add new functions to the standard functions that are available in FileMaker Pro. You can see those
extra functions for all plug-ins at the top right of the Specify Calculation Box:

IMPORTANT In the United States, commas act as list separators in functions. In other countries semi-
colons might be used as list separators. The separator being used depends on the operating system your
computer uses, as well as the one used when the file was created. All examples show the functions with
commas.

The Troi Serial Plug-in adds the following functions:
function name short description
Serial-Version check for correct version of the plug-in

Serial-GetPortsNames returns the names of all serial ports that are available on the computer
Serial-Open opens a serial port
Serial-Close closes a serial port
Serial-Receive receives data from a serial port
Serial-Send send data to a serial port
Serial-SetDispatchScript tell the plug-in which script to call when data is received
Serial-DataWasReceived returns if data was received on a open port
Serial-RestoreSituation tell the plug-in to bring the original file back to the front
Serial-ToASCII converts (one or more) numbers to their equivalent ASCII characters
Serial-Control suspends and resumes input from a serial port

Using external functions

External functions for this plug-in can be used in a script step using a calculation. The external functions
should not be used in a define field calculation.

IMPORTANT The Balance functions have to be used in a specific way, to create the desired effect. See the
section on Balance functions for the specifics on this.

Serial-Version

Example usage: External(Serial-Version; "") will return "Troi Serial Plug-in 1.0b1".

IMPORTANT You should always check if the plug-in is loaded, by using this function. If the plug-in is not
loaded use of external functions may result in unexpected result or data loss, as FileMaker will return an
empty field to any external function that is not loaded.

2

Plug-in Names

Select External functions
to see all the plug-ins

External Functions
shown here

An External
function

Serial-GetPortNames

Syntax External("Serial-GetPortNames" , "")

Returns the names of all serial ports that are available on the computer.

Parameters
no parameters leave empty for future use.

Result

The returned result is a list of serial ports that are available on the computer that is running FileMaker Pro.
Each available port is on a different line. On a desktop Mac a typical result will be:

Printer Port¶
Modem Port¶

On a portable Mac a typical result will be:
Printer-Modem Port¶
Internal Modem¶

On Windows the result will be:
COM1¶
COM2¶
COM3¶
COM4¶

Use this function to let the user of the database choose which port to open. Store the name of the chosen
port in a global field. You can then check the next time the database is opened whether the portname is still
present and ask the user if he wants to change his preference.

If an error occurs an error code is returned. Returned error codes can be:
$$-108 memFullErr Ran out of memory

Other errors might be returned.

NOTE On Windows currently there is no apparent way to test for the available portnames, so at the
moment this function always returns the same result.

3

Serial-Open

Syntax Set Field[gErrorCode, External("Serial-Open" , "portname | switches ")]

Opens a serial port with this name and the specified parameters.

Parameters
portname: the name of the port to open
switches: (optional) specifies the setting of the port like the speed of the port etc.

Result

Returned result is an error code:
0 no error
$$-50 paramErr There was an error with the parameter
$$-108 memFullErr Ran out of memory
$$-97 portInUse Could not open port, the port is in use
$$-4210 portDoesnotExistErr A serial port with this name is not available on this computer
$$-4211 AllPortsNullErr No serial ports are available on this computer

Other errors might be returned.

Example usage

Set Field[gErrorCode, External("Serial-Open" , "COM2|baud=19200")]

will open the COM2 port with a speed of 19200 baud.

Specifying the port settings

Default port settings

A serial port can be configured in a lot of ways. These settings can be set by specifying switches. If you
don't specify any switches the port is initialised to the following settings: a speed of 9600 baud, no parity, 8
data bits, 1 stop bit, no handshaking. If you want to use this setting open the port like this:

Set Field[gErrorCode, External("Serial-Open", "COM2")]

Specifying other port settings

It is recommended that you set the port settings explicitly.. Give the settings by concatenating the desired
settings keywords. You specify them like this:

Set Field[gErrorCode, External("Serial-Open",
"COM2 | baud=9600 parity=none data=8 stop=10 flowControl=XOnXOff")]

You can set the speed, the parity, the number of data and stopbits, and the handshaking to use. Note that the
order of the keywords and case are ignored. All keywords are optional and should be separated by a space
or a return.

4

Specifying the port speed

The port speed indicates how quick a the data is transported over the serial line.
Allowed values for the port speed are:

NOTE Not all speeds may be supported on all serial ports. Check the documentation of the computer and
the equipment you want to connect.

You need to specify the same speed that the other equipment is using. Higher port speeds can result in loss
of data if the serial cable can't cope with this speed. If this happens try a lower speed.

Specifying the bit format options

Data over a serial port is sent in small packet of 4 to 10 bits. This packet consists of 4-8 data bits, followed
by a parity bit and stopbits.

Data bits
You can specify the number of the data bits by adding one of the datasize keywords to the switch parame-
ter. The most used value is 8 data bits. Allowed values for the number of data bits are:

Parity bits
You can specify the parity bit by giving adding one of the following keywords to the switch parameter:

Stop bits
You can specify the number of stopbits by giving adding one of the following keywords to the switch para-
meter:

Here stop=10 means 1 stop bit, stop=15 means 1.5 stopbit and stop=20 means 2 stopbits.

5

d a t a = 7
d a t a = 8

d a t a = 4
d a t a = 5
d a t a = 6

p a r i t y = o d dp a r i t y = n o n e p a r i t y = e v e n

s t o p = 1 5s t o p = 1 0 s t o p = 2 0

b a u d = 7 2 0 0
b a u d = 9 6 0 0
b a u d = 1 4 4 0 0
b a u d = 1 9 2 0 0

b a u d = 2 8 8 0 0
b a u d = 3 8 4 0 0
b a u d = 5 7 6 0 0

b a u d = 1 1 5 2 0 0
b a u d = 2 3 0 4 0 0

b a u d = 1 8 0 0
b a u d = 2 4 0 0
b a u d = 3 6 0 0
b a u d = 4 8 0 0

b a u d = 1 5 0
b a u d = 3 0 0
b a u d = 6 0 0
b a u d = 1 2 0 0

Specifying the handshaking options

Handshaking is a way to ensure that the transfer of data can be stopped temporarily. This also called (data)
flow control. A serial port can use hardware handshaking and software handshaking. For hardware hand-
shaking to work the serial cable must have wires to support it.

Using the Serial-Open function this plug-in allows a basic way to set the handshaking and also an advanced
way, which gives more options, but most users probably don't need.

Basic handshaking options

Basic handshaking has 3 keywords:

f l o w C o n t r o l = D T R D S R f l o w C o n t r o l = R T S C T S f l o w C o n t r o l = X O n X O f f

You can specify one or more of these flow control keywords. You should specify at least one of these key-
words. Try flowControl=DTRDSR as this is mostly supported. FlowControl=DTRDSR and f l o w C o n t r o l = R T S C T S
are hardware handshaking options, for which you need proper cabling. FlowControl=XOnXOff is a software
based handshake option.

FlowControl=DTRDSR means that the signal DTR is used for input flow control and DSR for output flow
control. FlowControl=RTSCTS means that the signal RTS is used for input flow control and CTS for output
flow control. FlowControl=XOnXOff uses a XOff character (control-S) and a XOn character (control-Q) to
stop input and output flow.

IMPORTANT Do not use F l o w C o n t r o l = X O n X O f f if you want to transfer binary data, like pictures. This pro-
tocol uses two ASCII characters that might also be in the binary data. F l o w C o n t r o l = X O n X O f f works fine with
normal text.

Example 1

Set Field[gErrorCode, External("Serial-Open",
"COM2 | baud=9600 parity=none data=8 stop=10 flowControl=DTRDSR")]

This will set the port to use D T R / D S R hardware handshaking.

Example 2

Set Field[gErrorCode, External("Serial-Open",
"COM2 | baud=9600 parity=none data=8 stop=10 flowControl=DTRDSR
flowControl=RTSCTS flowControl=XOnXOff")]

This will set the port to use all 3 types of handshaking in parallel.

6

Advanced handshaking options

Advanced handshaking options allows you more control over the serial port settings. It enables you to set
the handshaking of the output an input separately.

With advanced handshaking you can use the following keywords:

keyword meaning
inputControl=XOnXOff use XOnXOff for input handshaking
outputControl=XOnXOff use XOnXOff for output handshaking

inputControl=RTS use RTS for input handshaking
outputControl=CTS use CTS for output handshaking

inputControl=DTR use DTR for input handshaking
outputControl=DSR use DSRfor output handshaking

DTR=enabled set DTR signal permanent to high
DTR=disabled set DTR signal permanent to low
RTS=enabled set RTS signal permanent to high
RTS=disabled set RTS signal permanent to low

Below you find how the basic handshaking keywords relate to the advanced handshaking keywords:

basic keyword = the same as 2 advanced keywords
flowControl=XOnXOff = inputControl=XOnXOff outputControl=XOnXOff
flowControl=RTSCTS = inputControl=RTS outputControl=CTS
flowControl=DTRDSR = inputControl=DTR outputControl=DSR

The other advanced keywords don't have a equivalent.

NOTE You can mix the basic handshaking keywords with the advanced handshaking keywords, as long as
this is sensible.

Example 1

If you want to use DTR handshaking for input flow control and CTS for output flow control use the follow-
ing settings to open COM1:

Set Field[gErrorCode, External("Serial-Open",
"COM1 | baud=9600 parity=none data=8 stop=10
outputControl=CTS inputControl=DTR")]

Example 2

If you want to enable the DTR signal and use XOnXOff input flow control use the following settings to
open COM1:

Set Field[gErrorCode, External("Serial-Open",
"COM1 | baud=9600 parity=none data=8 stop=10
DTR=enabled inputControl=XOnXOff")]

7

Example 3

Set Field[gErrorCode, External("Serial-Open",
"COM2 | baud=9600 data=7 parity=odd stop=20 flowControl=XOnXOff
outputControl=CTS inputControl=DTR")]

This shows that XOnXOff is used for input and output flow control and also DTR handshaking for input
flow control and CTS for output flow control.

8

Serial-Close

Syntax Set Field[gErrorCode, External("Serial-Close" , "portname")]

Closes a serial port with the specified name . If the portname parameter is "" ALL ports are closed.

Parameters
portname: the name of the port to close

Result
The returned result is an error code:

0 no error the port was closed
$$-4210 portDoesnotExistErr A serial port with this name is not available on this computer
$$-4211 AllPortsNullErr No serial ports are available on this computer
$$-108 memFullErr Ran out of memory

Other errors might be returned.

Example Usage

This will close the COM3 port:

Set Field[gErrorCode, External("Serial-Close" , "COM3")]

This will close all open ports:

Set Field[gErrorCode, External("Serial-Close" , "")]

9

Serial-Receive

Syntax Set Field[gResult, External("Serial-Receive" , "portname")]

Receives data from a serial port with the specified name . The port needs to be opened first (See Serial-
Open). If no data is available an empty string is returned:"".

Parameters
portname: the name of the port to receive data from

Result

The returned result is the data received or an error code. An error always starts with 2 dollars, followed by
the error code. You should always check for errors when receiving by testing if the first two characters are
dollars. See below.

Returned error codes can be:
$$-28 notOpenErr The port is not open
$$-108 memFullErr Ran out of memory
$$-50 paramErr There was an error with the parameter
$$-4210 portDoesnotExistErr A serial port with this name is not available on this computer
$$-4211 AllPortsNullErr No serial ports are available on this computer
$$-207 notEnoughBufferSpace The input buffer is full

Other errors might be returned.

Example Usage

Set Field[gResult, External("Serial-Receive" , "Modem port")]

This will receive data from the Modem port.

Example: Receiving and Testing for Errors

Below you find a "Receive Data" script for receiving data into a global text field g T e m p R e s u l t R e c e i v e d ,
The script tests for errors. gPortName is a global text field where the name of the previously opened port
was stored.

Set Field [gTempResultReceived, External("Serial-Receive", gPortName)]
If [Left(gTempResultReceived, 2) = "$$"]

B e e p
If [gTempResultReceived = "$$-28"]

Show Message [Open the port first]
E l s e

If [gTempResultReceived = "$$-207"]
Show Message [Buffer overflow error.]

E l s e
Show Message [An error occurred!]

End If
End If
Halt Script

End If

10

Serial-Send

Syntax Set Field[gResult, External("Serial-Send" , "portname | data")]

Sends data to the serial port with the specified name . The port needs to be opened first (See Serial-
Open).

Parameters
portname: the name of the port to send data to
data: the text data that is to be sent to the serial port

Result

The returned result is an error code. An error always starts with 2 dollars, followed by the error code. You
should always check for errors when sending by testing if the first two characters are dollars. See below.

Returned error codes can be:
0 no error the data was send
$$-28 notOpenErr The port is not open
$$-108 memFullErr Ran out of memory
$$-50 paramErr There was an error with the parameter
$$-4210 portDoesnotExistErr A serial port with this name is not available on this computer
$$-4211 AllPortsNullErr No serial ports are available on this computer
$$-207 notEnoughBufferSpace The output buffer is full

Other errors might be returned.

Example Usage

Set Field[gResult, External("Serial-Send" ,
"Modem port| So long and thanks for all the fish")]

This will send the string "So long and thanks for all the fish" to the Modem port.

Example: Sending and Testing for Errors

Below you find a "Send Data" script for sending data from a global text field
gTempResultReceived, The script tests for errors. gPortName is a global text field where the name
of the previously opened port was stored.

Set Field [gErrorCode, External("Serial-Send", gPortName & "|" & gTextToSend)]
If [Left(gErrorCode, 2) = "$$"]

B e e p
If [gErrorCode = "$$-28"]

Show Message [Open the port first]
E l s e

If [gErrorCode = "$$-207"]
Show Message [Buffer overflow error.]

E l s e
Show Message [An error occurred while sending!]

End If
End If
Halt Script

End If

11

Receiving data via Dispatch Scripting™

FileMaker 5.0 adds support for ActiveX on Windows. Together with Apple Event support on the Mac it is
now possible on all platforms to trigger scripts by name. The 2.0 version of the Serial Plug-in uses these
automation features, by extending the Dispatch Scripting mechanism. It is now possible to tell the plug-in
the name of the script to be triggered. It is no longer needed that this script is visible in the Scripts Menu.

NOTE If you are still using FileMaker 4 on the Windows platform you need to fall back to the original
Dispatch Scripting via a key (see below).

Functions to implement Dispatch Scripting

The following external functions help in achieving the receiving of data via the Dispatch Script.

Serial-SetDispatchScript tell the plug-in which (Dispatch) script to call when data is received
Serial-DataWasReceived returns 1 when data was received on a open port
Serial-RestoreSituation tell the plug-in to bring the original file back to the front

-> See the sample file Dispatch.fp3 for a working example.

Dispatch Scripting using Script Name

This method of triggering a script when there is data received is the preferred way. Usually you set the dis-
patch script once after you have opened the serial port.

Example "Set Dispatch Script with name"

Below you find a sample Set Dispatch Script:

Set Field [gErrorCode, External("Serial-SetDispatchScript",
Status(CurrentFileName) & "| scriptname=Process Data Received")]

If [Left(gErrorCode, 2) = "$$"]
B e e p
Show Message [An error occurred while setting the dispatch script]
Halt Script

End If

This tells the plug-in to trigger the script Process Data Receivedwhenever incoming data from (one of) the
serial port(s) is available. In the script Process Data Receivedyou can retrieve the incoming data, and store
it, and do any other processing.

Dispatch Scripting using a Key

This plug-in also has a cross platform way to execute a script when data has been received, that also works
with FileMaker 4.0 on Windows. This is done via a Dispatch Script with a key. If you want this functionali-
ty you need to implement the Dispatch functions in your database. This is how this can be done:

12

NEW 2.0

During development

You have to implement this once:
- write the Dispatch Script or change an existing script
- include the Dispatch Script in the menu, so it can be called from the keyboard with control-1 to

control 9 (Windows) or command-1 to command-9 (Mac)
- write a "Start receiving script" that

• opens the serial port
• and tells the plug-in which is the Dispatch Script.

When Running the database

When the database is running and you want to begin receiving:
- perform the "Start receiving script".

This tells the plug-in for example that the Dispatch Script can be called from the keyboard with control-1
(Windows) or command-1 (Mac).

This is what happens when data arrives:
- the plug-in will bring the database file to the front and simulate a press on the keyboard:control-1

(Windows) or command-1(Mac).
- this will start the Dispatch Script, which can handle the receiving of the data.

NOTE You can still use the Dispatch Script for other actions, so this doesn't cost a place in the menu.
That's why we call it a dispatching script: when called it determines if it was called because there was data
received and if yes it will dispatch the processing.

Example Dispatch Script

Below you find a sample "To Menu" Dispatch Script:

If [External("Serial-DataWasReceived", "")]
Perform Script [Sub-scripts, "Process Data Received"]

E l s e
Enter Browse Mode []
Go to Layout [“Menu”]
Halt Script

End If

This script checks if there is data received. If this is the case it dispatches to the script "Process Data
Received" which receives the data and puts it into a field.Else it will do its normal business (going to a
menu).

Make sure you include this script in the menu. We assume this script can be performed with the keyboard
shortcut :control-1 (Windows) or command-1 (Mac)

13

Example Process Data Received Script

Below you find a sample "Process Data Received" script, which gets the data from the plug-in
into the field mesReceived.

Enter Browse Mode []
Perform Script [Sub-scripts, "Receive Data in global gTempResultReceived"]
Set Field [mesReceived, mesReceived & gTempResultReceived]
Set Field [gErrorCode, External("Serial-RestoreSituation", "")]

Example "Set Dispatch Script" Script

Below you find a sample "Set Dispatch Script" Script:

Set Field [gErrorCode, External("Serial-SetDispatchScript",
Status(CurrentFileName) & "| scriptkey=1")]

If [Left(gErrorCode, 2) = "$$"]
B e e p
Show Message [An error occurred while setting the dispatch script]
Halt Script

End If

Example Start Receiving Script

Below you find a sample "Start Receiving" script:

Perform Script [Sub-scripts, "Open Serial Port"]
Perform Script [Sub-scripts, "Set Dispatch Script"]

When you want to begin receiving perform the "Start receiving script".

14

Script Triggering on a Match String

The Serial plug-in can look for a special match string that has to arrive at the input buffer before the it trig-
gers a script. When you specify the dispatch script, you can add the waitformatch parameter.

The script step below will set a dispatch script Process Data Received , which is only triggered after
the string O K is received in the input buffer.

Set Field [gErrorCode, External("Serial-SetDispatchScript" ,
Status(CurrentFileName) &
"| scriptname=Process Data Received" &
"| waitformatch=OK")]

The script step below will set a dispatch script Process Data Received, which is only triggered after
a CR (carriage return) character, followed by a LF (linefeed) character is received. These are the ASCII
characters 0x0D and 0x0A respectively. (See the ASCII Table in Appendix A)

Using the ToASCII function we set the matchstring like this:

Set Field [gErrorCode, External("Serial-SetDispatchScript",
Status(CurrentFileName) &
"| scriptname=" & "Process Data Received" &
"| waitformatch=" & External("Serial-ToASCII", "OxOD|Ox0A")]

You can specify any string up to 25 characters.

15

NEW 2.0

Serial-SetDispatchScript

Syntax Set Field[gResult, External("Serial-SetDispatchScript", "filename | scriptID | waitformatch")

Set Field[gResult, External("Serial-SetDispatchScript", "filename | scriptkey=x ") or
Set Field[gResult, External("Serial-SetDispatchScript", "filename | scriptname=nnnn ") or
Set Field[gResult, External("Serial-SetDispatchScript", "")

Sets the Dispatch Script to trigger when data is received. If you give an empty parameter "", the
Dispatch Script is removed.
Parameters

filename: the name of the file with the Dispatch Script
scriptID: this indicates which script is to be triggered. See below for details
waitformatch: (optional) wait for this string of characters before triggering a script. The match-

string can be maximum 25 characters long.

The parameter scriptID can be one of these forms

scriptname=nnnn : the name of the script to trigger. Not available for FileMaker 4. under Windows.
scriptkey=x : the key number in the menu of the Dispatch Script. x must be in the range

from 0-9

Result

The returned result is an error code. An error always starts with 2 dollars, followed by the error code. You
should always check for errors.

Returned error codes can be:
0 no error the Dispatch Script was set
$$-50 paramErr There was an error with the parameter

Other errors might be returned.

Example Usage

Set Field[gErrorCode, External("Serial-SetDispatchScript",
Status(CurrentFileName) & "| scriptname=Read Script | waitformatch=hello")]

This will set the Dispatch Script to the script “Read Script” of the current file. The script will not be trig-
gered before the string “hello” is found.

Example Usage

Set Field[gErrorCode, External("Serial-SetDispatchScript",
Status(CurrentFileName) & "| scriptkey=1")]

This will set the Dispatch Script to the script with shortcut control-1 (or command-1) of the current file.

Example Usage (resetting the Dispatch Script)

Set Field[gErrorCode, External("Serial-SetDispatchScript", "")]

This will reset the Dispatch Script. No action is taken when data is received.

16

NEW FEATURES 2.0

Serial-DataWasReceived

Syntax Set Field[gResult, External("Serial-DataWasReceived", "")

Returns 1 when data was received on a serial port. Use this function to see if this is an event that needs
to be handled.

Parameters
no parameters leave empty for future use.

Result

The returned result is an boolean value. Returned is either:
0 no data received
1 data was received in the buffer

When this function returns 1 you can get the data with the function Serial-Receive.

Example Usage

If[External("Serial-DataWasReceived", "")]
Perform Script [Sub-scripts, “Process Data Received”]

E l s e
... do something else

E n d i f

17

Serial-RestoreSituation

Syntax Set Field[gResult, External("Serial-RestoreSituation", "")]

Bring the database file that was in front, before the Dispatch Script was called, back to the front.

Parameters
no parameters leave empty for future use.

Result

The returned result is an error code:
0 no error

At the moment no other results are returned.

Example Usage

Set Field [gErrorCode, External("Serial-RestoreSituation", "")]

18

Serial-ToASCII

Syntax Set Field[gResult, External("Serial-ToASCII", "asciiCode | asciiCode | asciiCode |...")]

Converts (one or more) numbers to their equivalent ASCII characters. See also Appendix A for a ASCII
Table.

Parameters
ASCIIcode(s) one or more numbers in the range from 0-255.

Result

The returned result is the string of text of the ASCII codes.

Example Usage

Set Field [text, External("Serial-ToASCII", "65|65|80|13")]

This will result in the text "AAP<CR>" where <CR> is a Carriage Return character.

NOTE You can also use hexadecimal notation for the numbers. Use 0x00 to 0xFF to indicate hexadecimal
notation.

Example Usage

Set Field [text, External("Serial-ToASCII", "0x31|0x32|0x33|0x0D|0x0A")]

This will result in the text "123<CR><LF>" where <CR> is a Carriage Return character and <LF> is a
Line Feed character.

NOTE The graphic rendition of characters greater than 127 is undefined in the American Standard Code
for Information Interchange (ASCII Standard) and varies from font to font and from computer to computer
and may look different when printed.

19

Syntax Set Field[gResult, External("Serial-Control" , "portname | switch")]

Controls the serial port with the specified name . You can suspend or resume the incoming data with this
command. The port needs to be open(See also Serial-Open). This command is very useful for devices
that send out continuous data, like an electronic weighing scale. See the example below.

Parameters
portname: the name of the port to control
switch: the action that needs to be done.

The switch parameter can be either:

suspend This will suspend reading the incoming stream of data.
resume This will resume reading the incoming stream of data.

NOTE The buffer will be emptied when the port is suspended. So when you give the resume command
only the data received after this command will be received.

NOTE You can continue to send data to the serial port.

Result

The returned result is an error code. An error always starts with 2 dollars, followed by the error code. You
should always check for errors when receiving by testing if the first two characters are dollars. See below.

Returned error codes can be:
0 noErr no error
$$-28 notOpenErr The port is not open
$$-108 memFullErr Ran out of memory
$$-50 paramErr There was an error with the parameter
$$-4210 portDoesnotExistErr A serial port with this name is not available on this computer
$$-4211 AllPortsNullErr No serial ports are available on this computer

Other errors might be returned.

Example Usage

Set Field[gResult, External("Serial-Control" , "Modem port|suspend")]

This will suspend the incoming stream of data from the Modem port.

Set Field[gResult, External("Serial-Control" , "Modem port|resume")]

This will resume the previously resumed incoming stream of data from the Modem port.

Example

Say you have an electronic weighing scale that sends data to the serial port continuously. The data is in this

NEW 2.0

20

Serial-Control

form:
1200 kg net CR LF
1199 kg net CR LF
1200 kg net CR LF
1200 kg net CR LF
e t c . . .

You are only interested in this data when you are actually weighing something. So the best way to handle
this is to open the serial port and then suspend this port. When you want to measure something you send a
resume command, and gather a full line of data, the suspend the port again.

You need to define these fields:

gPortName global text field, to hold the portname
gErrorCode global text field, to hold the error code in
weight number field, to store the weight

When starting up the database you issue these commando in a startup script:

Set Field[gPortName,"COM2"]
Set Field[gErrorCode, External("Serial-Open" , gPortName & "|baud=19200")]
If[gErrorCode = 0]

Set Field[gErrorCode, External("Serial-Control" , gPortName & "|suspend")]
E n d i f

This will open the port and then wait till further notice. When the user of the database presses a button you
start this Measure Now script:

Set Field [gTempResultReceived, ""]
Set Field [gTempBuffer, ""]
Set Field [gNumber, 10]

Comment [Resume the incoming data...]
Set Field [gErrorCode, External("Serial-Control", gPortName & "| resume")]
If [gErrorCode = 0]

L o o p
Perform Script [Sub-scripts, Receive Data in global gTempResultReceived]
Set Field [gTempBuffer, gTempBuffer & gTempResultReceived]
Exit Loop If [PatternCount(gTempBuffer , "¶") >= 2 or gErrorCode <> 0]
Pause/Resume Script [0:00:01]
Set Field [gNumber, gNumber - 1]
If [gNumber = 0]

Set Field [gErrorCode, -1]
End If

End Loop
Set Field [gNumber, External("Serial-Control", gPortName & "| suspend")”]

End If
Perform Script [Sub-scripts, Store Measure Results]

The Measure Now script resets the buffers, then resumes the incoming data. Inside the loop the data is
received until there are 2 returns in the buffer, which means a complete line was received. The script then
suspends the port again and then the script Store Measure Results is called to store the results in a record.

To prevent this looping forever when no data is received we also use a counter, g N u m b e r . It starts at 10 and
is lowered every time through the loop. After 10x the script gives up and an error code of -1 is set, to get
out of the loop.

21

Here is the Store Measure Results script:

If [gErrorCode = 0 and PatternCount(gTempBuffer , "¶") >= 2]
New Record/Request
Comment [Cut off at the end of the line]
Set Field [gTempBuffer, Left(gTempBuffer,

Position(gTempBuffer, "¶", Length(gTempBuffer) , -1) - 1)]
Comment [Copy one line from the end...]
Set Field [Weight, Middle(gTempBuffer,

Position(gTempBuffer, "¶", Length(gTempBuffer) , -1) + 1, Length(gTempBuffer))]
E l s e

B e e p
Show Message [An error occurred!]

End If

Go to Field []

This script will create a new record and find the last line in the buffer, and store it in the field W e i g h t .

22

Appendix A: ASCII Table

Char Dec Hex Control Description
NUL 0 0x00 ^@ null (end of C string)
SOH 1 0x01 ^A start of heading
STX 2 0x02 ^B start of text
ETX 3 0x03 ^C end of text
EOT 4 0x04 ^D end of transmission
ENQ 5 0x05 ^E enquiry
ACK 6 0x06 ^F acknowledge
BEL 7 0x07 ^G bell
BS 8 0x08 ^H backspace
TAB 9 0x09 ^I horizontal tab
LF 10 0x0A ^J line feed
VT 11 0x0B ^K vertical tab
FF 12 0x0C ^L form feed
CR 13 0x0D ^M carriage return
SO 14 0x0E ^N shift out
SI 15 0x0F ^O shift in
DLE 16 0x10 ^P data line escape
DC1 17 0x11 ^Q device control 1 (X-ON)
DC2 18 0x12 ^R device control 2
DC3 19 0x13 ^S device control 3 (X-OFF)
DC4 20 0x14 ^T device control 4
NAK 21 0x15 ^U negative acknowledge
SYN 22 0x16 ^V synchronous idle
ETB 23 0x17 ^W end transmission block
CAN 24 0x18 ^X cancel
EM 25 0x19 ^Y end of medium
SUB 26 0x1A substitute
ESC 27 0x1B ^[escape
FS 28 0x1C ^\ file separator
GS 29 0x1D ^] group separator
RS 30 0x1E ^^ record separator
US 31 0x1F ^_ unit separator

Char Dec Hex Description
sp 32 0x20 space
! 33 0x21
" 34 0x22
35 0x23
$ 36 0x24
% 37 0x25
& 38 0x26
' 39 0x27
(40 0x28
) 41 0x29
* 42 0x2A
+ 43 0x2B
, 44 0x2C
- 45 0x2D
. 46 0x2E
/ 47 0x2F
0 48 0x30
1 49 0x31
2 50 0x32
3 51 0x33
4 52 0x34
5 53 0x35
6 54 0x36
7 55 0x37
8 56 0x38
9 57 0x39
: 58 0x3A
; 59 0x3B
< 60 0x3C
= 61 0x3D
> 62 0x3E
? 63 0x3F
@ 64 0x40

Char Dec Hex
A 65 0x41
B 66 0x42
C 67 0x43
D 68 0x44
E 69 0x45
F 70 0x46
G 71 0x47
H 72 0x48
I 73 0x49
J 74 0x4A
K 75 0x4B
L 76 0x4C
M 77 0x4D
N 78 0x4E
O 79 0x4F
P 80 0x50
Q 81 0x51
R 82 0x52
S 83 0x53
T 84 0x54
U 85 0x55
V 86 0x56
W 87 0x57
X 88 0x58
Y 89 0x59
Z 90 0x5A
[91 0x5B
\ 92 0x5C
] 93 0x5D
^ 94 0x5E
_ 95 0x5F
` 96 0x60

23

Char Dec Hex
a 97 0x61
b 98 0x62
c 99 0x63
d 100 0x64
e 101 0x65
f 102 0x66
g 103 0x67
h 104 0x68
i 105 0x69
j 106 0x6A
k 107 0x6B
l 108 0x6C
m 109 0x6D
n 110 0x6E
o 111 0x6F
p 112 0x70
q 113 0x71
r 114 0x72
s 115 0x73
t 116 0x74
u 117 0x75
v 118 0x76
w 119 0x77
x 120 0x78
y 121 0x79
z 122 0x7A
{ 123 0x7B
| 124 0x7C
} 125 0x7D
~ 126 0x7E
Del 127 0x7F
Ä 128 0x80
Å 129 0x81
Ç 130 0x82
É 131 0x83
Ñ 132 0x84
Ö 133 0x85
Ü 134 0x86
á 135 0x87
à 136 0x88
â 137 0x89
ä 138 0x8A
ã 139 0x8B
å 140 0x8C
ç 141 0x8D
é 142 0x8E
è 143 0x8F
ê 144 0x90
ë 145 0x91
í 146 0x92
ì 147 0x93
î 148 0x94
ï 149 0x95
ñ 150 0x96
ó 151 0x97
ò 152 0x98
ô 153 0x99
ö 154 0x9A
õ 155 0x9B
ú 156 0x9C
ù 157 0x9D
û 158 0x9E
ü 159 0x9F
† 160 0xA0

24

Char Dec Hex
° 161 0xA1
¢ 162 0xA2
£ 163 0xA3
§ 164 0xA4
• 165 0xA5
¶ 166 0xA6
ß 167 0xA7
® 168 0xA8
© 169 0xA9
™ 170 0xAA
´ 171 0xAB
¨ 172 0xAC
≠ 173 0xAD
Æ 174 0xAE
Ø 175 0xAF
∞ 176 0xB0
± 177 0xB1
≤ 178 0xB2
≥ 179 0xB3
¥ 180 0xB4
µ 181 0xB5
∂ 182 0xB6
∑ 183 0xB7
∏ 184 0xB8
π 185 0xB9
∫ 186 0xBA
ª 187 0xBB
º 188 0xBC
Ω 189 0xBD
æ 190 0xBE
ø 191 0xBF
¿ 192 0xC0
¡ 193 0xC1
¬ 194 0xC2
√ 195 0xC3
ƒ 196 0xC4
≈ 197 0xC5
∆ 198 0xC6
« 199 0xC7
» 200 0xC8
… 201 0xC9

202 0xCA
À 203 0xCB
Ã 204 0xCC
Õ 205 0xCD
Œ 206 0xCE
œ 207 0xCF
– 208 0xD0
— 209 0xD1
“ 210 0xD2
” 211 0xD3
‘ 212 0xD4
’ 213 0xD5
÷ 214 0xD6
◊ 215 0xD7
ÿ 216 0xD8
Ÿ 217 0xD9
⁄ 218 0xDA
¤ 219 0xDB
‹ 220 0xDC
› 221 0xDD
fi 222 0xDE
fl 223 0xDF
‡ 224 0xE0

Char Dec Hex
· 225 0xE1
‚ 226 0xE2
„ 227 0xE3
‰ 228 0xE4
Â 229 0xE5
Ê 230 0xE6
Á 231 0xE7
Ë 232 0xE8
È 233 0xE9
Í 234 0xEA
Î 235 0xEB
Ï 236 0xEC
Ì 237 0xED
Ó 238 0xEE
Ô 239 0xEF

240 0xF0
Ò 241 0xF1
Ú 242 0xF2
Û 243 0xF3
Ù 244 0xF4
ı 245 0xF5
ˆ 246 0xF6
˜ 247 0xF7
¯ 248 0xF8
˘ 249 0xF9
˙ 250 0xFA
˚ 251 0xFB
¸ 252 0xFC
˝ 253 0xFD
˛ 254 0xFE
ˇ 255 0xFF

Appendix A: ASCII Table (continued)

